Que	estion	Scheme	Marks	AOs		
		N.B. Use the mass in the ' <i>ma</i> ' term of an equation to determine which part of the system (cage and block, cage or block) it applies to.				
1(a)		Translate situation into the model and set up the equation of motion for the <u>cage and the block</u> to obtain an equation in T only.	M1	3.3		
		$T - 40g - 10g = 50 \times 0.2$	A1	1.1b		
		500 (N) Must be positive	A1	1.1b		
		Some examples: $T - 50 = 50 \times 0.2$ and $T - 40g - 10g = 50g \times 0.2$ both score M1A0A0				
			(3)			
((b)	Use the model to set up the equation of motion for the <u>block</u> to obtain an equation in R only.	M1	3.4		
		$R - 10g = 10 \times 0.2$ Allow - R instead of R	A1	1.1b		
	100 (N) Must be positive.			1.1b		
	OR: Use the model to set up the equation of motion for the <u>cage</u> to obtain an equation in <i>R</i> only.		M1	3.4		
		$T - 40g - R = 40 \times 0.2$ with their T substituted	A1	1.1b		
		100 (N) Must be positive	A1	1.1b		
			(3)			
			(6 n	narks)		
Note N.B. max	es: Only (a)	penalise the use of an incorrect value of <i>g</i> ONCE for the whole V1A1A0 (b) M1A1A1	questior	n, so		
1a	M1	Correct number of terms, condone sign errors				
	A1	Correct equation in T only				
	A1	cao				
1b	M1	Correct number of terms, condone sign errors				
	A1	Correct equation in R only				
	A1	cao				

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R ORL, United Kingdom

Que	estion	Scheme	Marks	AOs
2	2(a)	Equation of motion for the car	M1	3.3
		7400 - 2R - 2400 = 1200a	A1	1.1b
		Equation of motion for the trailer	M1	3.4
		2400 - R = 400a	A1	1.1b
		<i>a</i> = 0.5	A1	1.1b
			(5)	
		N.B. Either equation could be replaced by: Equation of motion for the whole system $7400-\ 3R = 1600a$		
2(b)		The value of a_1 would be less than the value of a . Allow ' a_1 would be slower than a' , N.B. Allow 'it would be less than a'	B1	3.5a
			(1)	
2	2(c)	The resistance won't be constant or just 'it won't be constant.' Allow the negative also: The resistance is constant or just 'it is constant' B0 for 'it doesn't take account of air resistance'	B1	3.5b
			(1)	
		·	(7	marks)
Note	es:			
2a	2a N.B. When entering marks on ePEN for the two equations of motion, enter them in the order in which they appear on the script.			e of the
		system it relates.	· ·	
	M1	Correct no.of terms and condone sign errors, with the driving force as 7400 (appropriate) and the tension as 2400.	when	
	A1	Correct equation		
	M1	Correct no.of terms and condone sign errors, with the driving force as 7400 (appropriate) and the tension as 2400.	when	
	A1	Correct equation		
	A1	сао		
2b	B1	сао		
2c	B1	B0 if any incorrect extras are given or for an incorrect statement		

Question	Scheme	Marks	AOs
3(a)(i)	Resolve vertically	M1	3.1b
	F acting UP the plane: OR F acting DOWN the plane:	A1	1.1b
	$(\uparrow) F \sin \alpha + 68.6 \cos \alpha = 5g \qquad -F \sin \alpha + 68.6 \cos \alpha = 5g$		
	Other possible equations from which X would need to be eliminated to give an equation in F only to earn the M mark are shown below.		
	The equation in <i>F</i> only must then be correct to earn the A mark.		
	Possible equations:		
	(\checkmark) 68.6 = $X \sin \alpha + 5g \cos \alpha$ (leads to $X = 49$ with $g = 9.8$)		
	<i>F</i> acting UP the plane: OR <i>F</i> acting DOWN the plane:		
	$(\nearrow) F + X \cos \alpha = 5g \sin \alpha \qquad -F + X \cos \alpha = 5g \sin \alpha$		
	$(\rightarrow) F \cos \alpha + X = 68.6 \sin \alpha \qquad -F \cos \alpha + X = 68.6 \sin \alpha$		
	 9.8 (N) (49/5 is A0) N.B. If sin and cos are interchanged in all equations, this leads to an answer of 9.8 in the wrong direction and can only score (a) (i)M1A0A0 (ii) A0 	A1	1.1b
		(3)	
3 (a)(ii)	Down the plane (Allow down or downwards or an arrow \swarrow , but must appear as the answer to (a) (ii) not just on the diagram.)	A1	2.2a
		(1)	
3(b)	N.B. If they use $R = 68.6$ in this part, the maximum they can score is M1A1M0A0M0A0 If they use $F = 9.8$ or their <i>F</i> from (a) in this part, the maximum they can score is M1A1M0A0M0A0		
	Equation of motion down the plane	M1	2.1
	$5g\sin\alpha - F = 5a$ Allow (- <i>a</i>) instead of <i>a</i>	A1	1.1b
	Resolve perpendicular to the plane	M1	3.1b
	$R = 5g\cos\alpha$	A1	1.1b
	F = 0.5R seen	M1	3.4
	$a = 1.96 \text{ or } 2.0 \text{ or } 2 \text{ (m s}^{-2} \text{) or } \frac{1}{5}g$	A1	1.1b
		(6)	

(10 marks)

Note	es:	
3a (i)	M1	Complete method to obtain an equation in <i>F</i> only. For each equation used, correct no. of terms, dimensionally correct, condone sin/cos confusion and sign errors, each term that needs to be resolved must be resolved.
	A1	Correct equation in F only, trig does not need to be substituted
	A1	cao (must be positive)
3a (ii)	A1	cao. Note that this mark is dependent on an answer of 9.8 or -9.8 for (a)(i) from a fully <u>correct solution</u> unless they have used $g = 9.81$, in which case the answer will be 9.7 or -9.7 (2sf) see SC2 below. N.B. Allow this mark, if their answer to (a)(i) is fully correct apart from a small error due to use of inaccurate trig i.e using an angle 36.9°
		SC 1: If they use μR at any point (with an unknown μ) for <i>F</i> in part (a), can score (a)(i) max M1A1A0 (a) (ii) A1, where they must have obtained $\mu R = 9.8$ or -9.8 , from correct working. SC 2: If $g = 9.81$ is used consistently throughout 2(a), (leading to $X = 48.9$ and $F = 9.7$
		(2sf) can score max (a)(i) M1A1A0 (a)(ii) A1
3b	M1	Correct no.of terms, dimensionally correct, condone sin/cos confusion and sign errors, each term that needs to be resolved must be resolved.
	A1	Correct equation for their F.
	M1	Correct no. of terms, dimensionally correct, condone \sin/\cos confusion and sign errors, each term that needs to be resolved must be resolved. (N.B. M0 if $R = 68.6$ (N) is used in this equation)
	A1	Correct equation
	M1	Could be seen on a diagram (N.B . M0 if $R = 68.6$ (N) is used)
	A1	Cao. Must be positive.

Ques	tion	Scheme	Marks	AOs
4(a	ı)	$(4\mathbf{i} - \mathbf{j}) + (\lambda \mathbf{i} + \mu \mathbf{j}) = (4 + \lambda)\mathbf{i} + (-1 + \mu)\mathbf{j}$	M1	3.4
		Use ratios to obtain an equation in λ and μ only	M1	2.1
		$\boxed{\frac{(4+\lambda)}{(-1+\mu)} = \frac{3}{1}} \text{or} \frac{\frac{1}{4}(4+\lambda)}{\frac{1}{4}(-1+\mu)} = \frac{3}{1}$	A1	1.1b
		$\lambda - 3\mu + 7 = 0^*$ Allow $0 = \lambda - 3\mu + 7$ but nothing else.	A1*	1.1b
			(4)	
(b)	$\lambda = 2 \Rightarrow \mu = 3$; Resultant force = $(6\mathbf{i} + 2\mathbf{j})$ (N)	M1	3.1a
		(6i+2j) = 4a OR $ (6i+2j) = 4a$	M1	1.1b
		Use of $\mathbf{r} = \mathbf{u}t + \frac{1}{2}\mathbf{a}t^2$ with $\mathbf{u} = 0$, their \mathbf{a} and $t = 4$: Or they may integrate their \mathbf{a} twice with $\mathbf{u} = 0$ and put $t = 4$:	DM1	2.1
		$\mathbf{r} = \frac{1}{2} \times \frac{(6\mathbf{i} + 2\mathbf{j})}{4} 4^2 = (12\mathbf{i} + 4\mathbf{j})$		
		$\sqrt{12^2 + 4^2}$	M1	1.1b
		ALTERNATIVE 1 for last two M marks: Use of $s = ut + \frac{1}{2}at^2$, with $u = 0$, their a and $t = 4$: DM1 $s = \frac{1}{2} \times \sqrt{1.5^2 + 0.5^2} \times 4^2$		
		Use of Pythagoras to find mag of a : $a = \sqrt{1.5^2 + 0.5^2}$ M1		
		ALTERNATIVE 2 for last two M marks: Use of $s = ut + \frac{1}{2}at^2$, with $u = 0$, their <i>a</i> and $t = 4$: DM1		
		$s = \frac{1}{2} \times \left(\frac{\sqrt{6^2 + 2^2}}{4}\right) \times 4^2$		
		Use of Pythagoras to find $ (6\mathbf{i}+2\mathbf{j}) $: = $\sqrt{6^2+2^2}$ M1		
		$\sqrt{160}$, $2\sqrt{40}$, $4\sqrt{10}$ oe or 13 or better (m)	A1	1.1b
			(5)	
			(9 n	narks)
Notes: .	Accept	column vectors throughout		
4a	M1	Adding the two forces, i 's and j 's must be collected (or must be a s vector) seen or implied	single colu	mn
	M1	Must be using ratios; Ignore an equation e.g. $(4 + \lambda)\mathbf{i} + (-1 + \mu)\mathbf{j} =$	$3\mathbf{i} + \mathbf{j}$ if th	ey go

on to use ratios.

		However, if they write $4 + \lambda = 3$ and $-1 + \mu = 1$ then $3(-1 + \mu) = 3$ so
		$4 + \lambda = 3(-1 + \mu)$ with no use of a constant, it's M0
		They may use the acceleration, with a factor of $\frac{1}{4}$ top and bottom, see alternative
		Allow one side of the equation to be inverted
	A1	Correct equation
	A1*	Given answer correctly obtained. Must see at least one line of working, with the LH fraction 'removed'.
	2.61	Adding \mathbf{F}_1 and \mathbf{F}_2 to find the resultant force, λ and μ must be substituted
40	MI	N.B. M0 if they use $\mu = 2$ coming from $-1 + \mu = 1$ in part (a).
	M1	Use of $\mathbf{F} = 4\mathbf{a}$ Or $ \mathbf{F} = 4a$, where F is <u>their</u> resultant. (including $3\mathbf{i} + \mathbf{j}$)
		This is an independent mark, so could be earned, for example, if they have subtracted the forces to find the 'resultant'
		N.B. M0 if only using \mathbf{F}_1 or \mathbf{F}_2
	DM	Dependent on previous M mark for
		Either : use of $\mathbf{r} = \mathbf{u}t + \frac{1}{2}\mathbf{a}t^2$ with $\mathbf{u} = 0$, their \mathbf{a} and $t = 4$ to produce a
		displacement vector
		Or : integrate twice, with $\mathbf{u} = 0$, their \mathbf{a} and $t = 4$ to produce a displacement Vector
		Or : use of $s = ut + \frac{1}{2}at^2$ with $u = 0$, their <i>a</i> and $t = 4$ to produce a length
		Use of Pythagoras, with square root, to find the magnitude of their displacement
	M1	vector, a or F (M0 if only using \mathbf{F}_1 or \mathbf{F}_2) depending on which method they have used.
	A1	cao

Que	stion	Scheme	Marks	AOs
5(a)		Resolve vertically, $R = 5g = 49$ (N)	B1	1.1b
			(1)	
5(b)		Equation of motion: $28 - F = 5 \times 1.4$	M1	3.1a
		F = 21	A1	1.1b
			(2)	
5	5(c)	$\mu = 0.43$ (2sf required)	B1 ft	3.4
			(1)	
	(4 mar			
Note	es:			
5a	B1	Allow either 5g or 49. No penalty for using $g = 9.81$ or 10.		
		Ignore any working. Must be a positive number.		
		B0 if <i>m</i> is involved.		
		N.B . Could be seen on a diagram, provided it's clearly the reaction.		
5b	M1	Equation with correct terms, dimensionally correct, condone sign errors.		
	A1	cao but allow $\frac{15g}{7}$. Ignore units.		
5c	B1 ft	$\mu = \frac{\text{their (b)}}{\text{their (a)}}$. Answer must be a positive number given to 2sf.		
		N.B.		
		B0 if they use $g = 9.81$ or 10 in this part of the question.		
		Do not allow restarts.		
		Allow $\mu > 1$.		

Question	Scheme	Marks	AOs
6(a)	The normal reaction at <i>B</i> is acting to the left so it must act to the right, right as it needs to balance (oppose, counter) the force at <i>B</i> , right as it prevents the rod from sliding (slipping, falling), right as the weight (mass) of the rod will mean the rod tends to slip left, mass or weight will be pushing the rod to the left so friction will oppose that. N.B. You may see an arrow on the diagram at <i>A</i> , instead of 'right'. B0 if they say the rod is moving oe Accept towards the wall instead of to the right.	Β1	2.4
		(1)	
6(b)	Take moments about A	M1	3.4
	$S \times 2a\sin\theta = Mga\cos\theta$	A1	1.1b
	$S = \frac{1}{2}Mg\cot\theta *$	A1*	2.2a
		(3)	
6(c)	Resolve vertically, R = Mg	B1	3.3
	Resolve horizontally, $F = S$	B1	3.3
	Other possible equations:		
	Resolve along the rod, $F \cos \theta + R \sin \theta = S \cos \theta + Mg \sin \theta$		
	Resolve perp to the rod, $R\cos\theta + S\sin\theta = F\sin\theta + Mg\cos\theta$		
	$M(B), \ R \times 2a\cos\theta = F \times 2a\sin\theta + Mga\cos\theta$		
	$M(G), \ Ra\cos\theta = Fa\sin\theta + Sa\sin\theta$		
	N.B. When entering these two B marks on ePEN,		
	First B1 is for a vertical resolution, second B1 is for a horizontal resolution, and if either is replaced by a different equation, enter appropriately		
	If both are replaced by other equations, enter in the order in which they appear in their working.		
	$F = \mu R$	B1	1.2
	$\frac{1}{2}Mg \times \frac{4}{3} = \mu Mg$	dM1	2.1
	$\mu = \frac{2}{3}$ oe Accept 0.67 or better	A1	2.2a
	S.C. For $F_{,,} \mu R$, B0		
	$\frac{1}{2}Mg \times \frac{4}{3}$,, μMg M1		

		$\frac{2}{3}$, μ A0				
N.B. If $\mu = \frac{2}{3}$ follows this, they could score all the marks.						
			(5)			
6	(d)	$\sqrt{F^2 + R^2}$	M1	3.1a		
		$\sqrt{\left(\frac{2}{3}Mg\right)^2 + \left(Mg\right)^2}$	M1	1.1b		
		$\frac{1}{3}Mg\sqrt{13}$ or 1.2Mg or better	A1	2.2a		
			(3)			
6	(e)	New value of <i>S</i> would be larger as the moment of the weight about <i>A</i> would be larger	B1	3.5a		
			(1)			
			(13	marks)		
Note	es:					
6a	B1	Any equivalent appropriate statement.				
6b	M1	Correct no. of terms, dimensionally correct, condone sin/cos confusion and	sign errors.			
		N.B. If <i>a</i> 's never appear, MO	N.B. If <i>a</i> 's never appear, M0			
	A1	Correct equation				
	A1*	Correct given answer correctly obtained, with no wrong working seen.				
		Allow $\frac{1}{2}Mg \cot \theta = S$ or $S = \frac{Mg \cot \theta}{2}$ or $\frac{Mg \cot \theta}{2} = S$ or $S = \frac{Mg}{2} \cot \theta$ or similar				
		but NOT $S = \frac{1}{2} \cot \theta$ Mg or similar				
		N.B. Allow <i>m</i> instead of <i>M</i>				
		Must be $ heta$ in final answer but allow a different angle in the working.				
6c	B1	сао				
	B1	сао				
	B1	Seen anywhere, e.g. on the diagram				
	dM1	Using $F = \mu R$, their two equations and substitute for trig (not necessarily correctly) to produce an equation in μ only.				
		I nis mark is dependent on the 3 previous B marks.				
	A1	Accept 0.67 or better				

